0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

17 схем импульсных преобразователей напряжения DC-DC

17 схем импульсных преобразователей напряжения DC-DC

Сегодня мы рассмотрим несколько схем несложных, даже можно сказать – простых, импульсных преобразователей напряжения DC-DC (преобразователей постоянного напряжения одной величины, в постоянное напряжение другой величины)

Чем хороши импульсные преобразователи. Во-первых, они имеют высокий КПД, и во-вторых могут работать при входном напряжении ниже выходного. Импульсные преобразователи подразделяются на группы:

  • – понижающие, повышающие, инвертирующие;
  • – стабилизированные, нестабилизированные;
  • – гальванически изолированные, неизолированные;
  • – с узким и широким диапазоном входных напряжений.

Для изготовления самодельных импульсных преобразователей лучше всего использовать специализированные интегральные микросхемы – они проще в сборке и не капризны при настройке. Итак, приводим для ознакомления 14 схем на любой вкус:

1. Нестабилизированный транзисторный преобразователь

Этот преобразователь работает на частоте 50 кГц, гальваническая изоляция обеспечивается трансформатором Т1, который наматывается на кольце К10х6х4,5 из феррита 2000НМ и содержит: первичная обмотка – 2х10 витков, вторичная обмотка – 2х70 витков провода ПЭВ-0,2. Транзисторы можно заменить на КТ501Б. Ток от батареи, при отсутствии нагрузки, практически не потребляется.

2. Стабилизированный транзисторный преобразователь напряжения

Трансформатор Т1 наматывается на ферритовом кольце диаметром 7 мм, и содержит две обмотки по 25 витков провода ПЭВ=0,3.

3. Нестабилизированный преобразователь напряжения на основе мультивибратора

Двухтактный нестабилизированный преобразователь на основе мультивибратора (VТ1 и VТ2) и усилителя мощности (VТ3 и VТ4). Выходное напряжение подбирается количеством витков вторичной обмотки импульсного трансформатора Т1.

4. Преобразователь на специализированной микросхеме MAX631

Преобразователь стабилизирующего типа на микросхеме MAX631 фирмы MAXIM. Частота генерации 40…50 кГц, накопительный элемент – дроссель L1.

5. Нестабилизированный двухступенчатый умножитель напряжения на MAX660

Можно использовать одну из двух микросхем отдельно, например вторую, для умножения напряжения от двух аккумуляторов.

6. Импульсный повышающий стабилизатор на микросхеме MAX1674

Типовая схема включения импульсного повышающего стабилизатора на микросхеме MAX1674 фирмы MAXIM. Работоспособность сохраняется при входном напряжении 1,1 вольта. КПД – 94%, ток нагрузки – до 200 мА.

7. MCP1252-33X50: Два напряжения от одного источника питания

Позволяет получать два разных стабилизированных напряжения с КПД 50…60% и током нагрузки до 150 мА в каждом канале. Конденсаторы С2 и С3 – накопители энергии.

8. Импульсный повышающий стабилизатор на микросхеме MAX1724EZK33 фирмы MAXIM

Типовая схема включения специализированной микросхемы фирмы MAXIM. Сохраняет работоспособность при входном напряжении 0,91 вольта, имеет малогабаритный SMD корпус и обеспечивает ток нагрузки до 150 мА при КПД – 90%.

9. Импульсный понижающий стабилизатор на микросхеме TL497

Читать еще:  Птички своими руками - 5 прикольных и простых идей

Типовая схема включения импульсного понижающего стабилизатора на широкодоступной микросхеме фирмы TEXAS. Резистором R3 регулируется выходное напряжение в пределах +2,8…+5 вольт. Резистором R1 задается ток короткого замыкания, который вычисляется по формуле: Iкз(А)= 0,5/R1(Ом)

10. Интегральный инвертор напряжения на микросхеме ICL7660

Интегральный инвертор напряжения, КПД – 98%.

11. Два изолированных преобразователя на микросхемах DC-102 и DC-203 фирмы YCL Elektronics

Два изолированных преобразователя напряжения DA1 и DA2, включенных по “неизолированной” схеме с общей “землей”.

12. Двухполярный стабилизированный преобразователь напряжения на микросхеме LM2587-12

Индуктивность первичной обмотки трансформатора Т1 – 22 мкГн, отношение витков первичной обмотки к каждой вторичной – 1:2.5.

13. Стабилизированный повышающий преобразователь на микросхеме MAX734

Типовая схема стабилизированного повышающего преобразователя на микросхеме фирмы MAXIM.

14. Нестандартное применение микросхемы MAX232

Эта микросхема обычно служит драйвером RS-232. Умножение напряжения получается с коэффициентом 1,6…1,8.

C этой схемой также часто просматривают:

ПРЕОБРАЗОВАТЕЛЬ НАПРЯЖЕНИЯ 12/220 В — 50 Гц
Преобразователь напряжения 12—> 220 В
Преобразователь напряжения 12—> 220 В до 200 Вт
Импульсный стабилизированный преобразователь напряжения
Регулятор сетевого напряжения
Цифровой кодовый замок с ИК ключом
Вольтметр постоянного тока с автоматическим выбором пределов измерения
Радиомикрофон повышенной мощности
Активный щуп для осциллографа

Arduino

Аудио

В Вашу мастерскую

Видео

Для автомобиля

Для дома и быта

Для начинающих

Зарядные устройства

Измерительные приборы

Источники питания

Компьютер

Медицина и здоровье

Микроконтроллеры

Музыкантам

Опасные, но интересные конструкции

Охранные устройства

Программаторы

Радио и связь

Радиоуправление моделями

Световые эффекты

Связь по проводам и не только.

Телевидение

Телефония

Узлы цифровой электроники

Фототехника

Шпионская техника

Реклама на KAZUS.RU

Последние поступления

Регулируемый блок питания с защитой

DC/DC преобразователь на интегральном таймере 555

Стабилизаторы напряжения на микросхеме ВА6220

Схема стабилизатора напряжения переменного тока

Замена микросхемы 7805 импульсным стабилизатором напряжения

Цифровой генератор опорного напряжения на ATtiny13

Повышающе-понижающий преобразователь напряжения для зарядки КПК от батареек

Повышающе-понижающий DC-DC преобразователь 7..14В / 9В 0,5А на микросхемах 34063 (с N-канальным MOSFET)

Повышающий преобразователь для питания программатора PROGOPIC от батареек

Повышающий DC-DC преобразователь 5..13В/19В 0,5А на MC34063 с внешним MOSFET

Схема повышающего и понижающего преобразователя напряжения

На схеме указаны эталонные номиналы, а плату мы делаем для решения своих задач.
Во-первых, нас интересует компактность.

Во-вторых, наш преобразователь питания позволяет спокойно создать выходной ток в 3 Ампера.

Большего и не надо.

Связано это с тем, что емкость применяемых накопительных конденсаторов небольшая, но схема способна выдать выходной ток до 5 А.

  • Смотрите также, как сделать преобразователь на 5В

Поэтому схема является универсальной. Параметры зависят от емкости конденсаторов, параметров дросселя, диодного выпрямителя и характеристик полевого ключа.

Читать еще:  Снуд своими руками. Схемы, идеи и мастер-классы

Ещё пару слов о схеме. Она представляет собой однотактный преобразователь на базе шим-контроллера UC3843.

Поскольку напряжение от аккумулятора немного больше штатного питания микросхемы, в схему был добавлен 12В стабилизатор 7812 для питания шим-контроллера.

  1. U1 – «IR2153»;
  2. C1 – электролит 470-1000uf 16v, желательно Low Esr;
  3. C2 – керамика 1n;
  4. C3, C4 – керамика 100n;
  5. C5, C6 – полипропилен 470nf 630v;
  6. R1 – многооборотный подстроечный резистор;

Остальные компоненты вопросов думаю не вызывают.

Файл печатной платы: ir2153.lay6[0,03MB]

В качестве генератора используется распространённая микросхема IR2153, для работы которой требуются всего несколько деталей в обвязке: времязадающая RC цепочка и конденсатор с диодом для верхнего ключа.

Транзисторы при сборке необходимо установить на небольшие радиаторы, я этого делать не стал т.к. плата нужна лишь для демонстрации. Так же не рекомендую включать устройство без запаянного электролитического конденсатора, может получится ситуация когда через ключи потечет сквозной ток.

Номиналы времязадающей цепи с помощью подстроечного резистора позволяют микросхеме работать в диапазоне частот примерно от 7 до 146kHz. В процессе настройки включать высоковольтный генератор желательно через амперметр для контроля тока, при этом желательно что бы блок питания выдавал не менее 3-х ампер при 12 вольт.

Подстроечным резистором можно пройтись по всему диапазону частот для нахождения резонансных участков, при этом для получения 20 киловольт искровой разряд не должен превышать буквально 1.5 см, а ток потребления при этом должен быть около 0.6-0.8А.

Если добиться таких результатов не удается то есть два варианта. Первый из них «поиграть витками», увеличивая или уменьшая их количество, второй – заменить резонансный конденсатор с 470 на 330 или 220 нанофарад. У меня все заработало сразу после сборки, но как говориться – если вдруг.

Перед намоткой первичной обмотки на ТДКС феррит следует изолировать изолентой или скотчем, мотать следует эмальпроводом 0.6-0.8мм, или (что лучше) сразу двумя-тремя проводами 0.6 параллельно. Провода от трансформатора до платы желательно не более 10 сантиметров.

Не следует забывать что во вторичной обмотке ТДКС как правило находится диод, поэтому умножитель напряжения к нему не подключишь.

Для использования в электростатической коптильне параллельно выходам необходимо поставить конденсатор

30kV 470pf – 2.2n и выходной токоограничительный резистор.

Наверно многие хотели бы иметь свой источник высокого напряжения, данная статья поможет вам собрать довольно надёжный источник средней мощности. Который к тому же лишён таких недостатков: как нагрев транзисторов, низкий КПД и т.п. Я бы конечно мог написать про самый простой, Блокинг генератор, но он не оправдывает ожиданий, потребляет много, греется сильно. По этому я решил описать немного сложнее схему из 10 деталей, но способную, быть домашним источником высокого напряжения. Ниже фотография того что нам понадобится:

Читать еще:  Нож из гаечного ключа своими руками

Итак теперь список того что нужно достать/купить, что бы собрать: транзисторы IRFP250N, резисторы по 470 Ом (2-3 Ватта), конденсаторы плёнка по 100 нФ 400 Вольт, (лучше взять несколько, скажем 10 и подбирать при какой ёмкости лучше работает), диоды UF5408, стабилитроны по 12 Вольт 1.5 Ватта ( если питать от БП компа то стабилитроны с резисторами по 10 Ком можно не паять), а так же конденсатор по питанию на 1000 мкФ 50 Вольт ( напряжение зависит от чего питаете, если от БП компа смело ставьте на 25 Вольт), по желанию индикация в виде светодиода, у меня зелёный. И да чуть не забыл, насчёт дросселя там нужно взять либо жёлтое кольцо (распылённое железо) из фильтра БП компа, либо феррит 2000 мГн и намотать около 40 Витков, проводом от 0.7 — 2мм.
Насчёт сборки устройства, всё достаточно просто делаем методом ЛУТ ( Лазерно- Утюжная Технология) плату, затем травим, сверлим, впаиваем детали, согласно схеме. Потом на радио рынке или со старого телевизора, вынимаем строчный трансформатор, оставляем только вторичную обмотку, что больше, а первичную мотаем сами многожильным проводом 10 витков с отводом от середины. Стоит отметить, что кол-вом витков в первичке и ёмкостью можно настроить преобразователь для оптимальной работы. Собственно схема устройства:

Как видно она довольна простая, но капризная в плане питания источник должен давать 12-30 Вольт (для данных транзисторов), и при этом иметь мощность от 50 Ватт, лучше 100 Ватт, какой нить старый трансформатор. Как плюсы схемы можно отметить слабый нагрев транзисторов, даже очень, в этом видео, которое я снял, что бы показать дугу. Я поставил в качестве радиатора, 2 алюминиевых профиля, и они были едва-едва нагретыми. Даже через 10 минут не нагревается, что довольно хорошо, не нужны громоздкие радиаторы, достаточна пластинки метала. Ниже видео, как работает:

Данная статья не подлежит комментированию, поскольку её автор ещё не является полноправным участником сообщества. Вы сможете связаться с автором только после того, как он получит приглашение от кого-либо из участников сообщества. До этого момента его username будет скрыт псевдонимом.

Это «Песочница» — раздел, в который попадают дебютные посты пользователей, желающих стать полноправными участниками сообщества.

Если у вас есть приглашение, отправьте его автору понравившейся публикации — тогда её смогут прочитать и обсудить все остальные пользователи Хабра.

Чтобы исключить предвзятость при оценке, все публикации анонимны, псевдонимы показываются случайным образом.

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector