2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как cделать орнитоптер своими руками

Как cделать орнитоптер своими руками

Эта инструкция — история о том, как я сделал прототип орнитоптера.

Для тех, кто не знает, орнитоптер — это механизм, который летает за счёт взмахов крыльями, как настоящая птица. Идея состояла в том, чтобы создать орнитоптер с нуля, управлять им дистанционно и, конечно, заставить его летать.

Пожалуйста, не судите строго — я не профессионал авиамоделирования. Так что не всё работает так, как мне бы хотелось, но всё же работает.

Реальный результат можно увидеть в многосерийном видео на нашем канале Youtube. Если вам понравится это руководство, пожалуйста, подпишитесь на канал.

Инструкция со временем будет исправляться и улучшаться новыми материалами, как и Орнитоптер.

Современные вызовы

Хотя современные самолёты могут перевозить тяжелые грузы на тысячи километров, конструкция и испытания эффективного орнитоптера до сих пор остаётся непростым заданием.

Из-за разной конструкции тела человек и птица создают разную подъемную силу. Граничных показателей мощности могут достичь только спортсмены-тяжелоатлеты, вес которых превышает создаваемую подъемную силу даже без учёта веса летательного аппарата. Теоретически, если бы человек весом 75 кг смог бы выработать граничную мощность, он мог бы совершить полёт на махолёте весом 15 кг за счёт только мышечной тяги, однако такой полёт длился бы не более нескольких секунд.

Кроме того, птичий полёт – это разнообразный и сложный процесс, прошедший немалый эволюционный путь. Для правильного маха птичьего крыла важна каждая мелочь и в прямом смысле чувство каждой клетки своего тела.

Над махолётами работают как исследователи и инженеры, так и изобретатели-энтузиасты. Любительские модели имеют разные формы и способы управления. Их создатели соревнуются за самое долгое время полёта. Задание состоит в том, чтобы разработать свою теорию и изобрести свой способ махающего полёта.

Изобретатели рассматривали идеи использования пружинных, резиновых, пневматических и других аккумуляторов для накопления энергии, которая вырабатывается человеком. Лучших результатов можно было бы достичь путём зарядки аккумулятора ещё до начала полёта. Но в таком случае махолёт теряет свою суть и становится обычным двигателем с малым КПД.

Первый в мире орнитоптер на мускульной тяге под названием «Снежная птица» (Snowbird) был сконструирован в университете Торонто (Канада) в 2010 году. 2 августа того же года Snowbird поставил свой первый неофициальный рекорд, когда пилот Тодд Райхерт за 19,3 секунды пролетел расстояние в 145 метров со средней скоростью 25,6 кмчас. Стоит отметить, что махолёт подняли в воздух с помощью тяги легкового автомобиля.

От птицы до насекомого

Причина многочисленных неудач понятна: саму сущность полета в те годы представляли достаточно смутно. Подъемную силу птицам дает не опора на воздух, а особый контур профиля крыла. Разделяя набегающий поток надвое, он заставляет воздух над верхней кромкой двигаться быстрее, чем над нижней. По закону Бернулли, давление будет выше в области с более медленным потоком. Возникающая разница между давлением под крылом и над ним создает подъемную силу. Но стоит начать махать крыльями — и эта ясная картина полностью меняется.

Известная поговорка гласит, что «по законам аэродинамики шмели вообще не могут летать». В принципе, это справедливо: с точки зрения классической аэродинамики насекомые и их крылья — это нечто несусветное. Даже в теории они неспособны создать подъемную силу и тягу, необходимые для полета, — если только мы не перейдем от классической аэродинамики планера к новой, нестационарной. Здесь все иначе: турбулентные завихрения, с которыми конструкторы самолетов борются не покладая рук, становятся ключом к полету и шмеля, и его родственников.

Крупные птицы используют взмахи лишь изредка — например, когда необходимо затормозиться для посадки или взлететь. Эти взмахи плюс движения ног позволяют им получить направленную вперед тягу, для того чтобы в действие вступила подъемная сила крыла. Насекомые же машут крыльями постоянно, причем по особой траектории, скорее вперед-назад, чем вверх-вниз. В сочетании с гибкостью крыльев и достаточной частотой взмахов это создает у их передней кромки турбулентные завихрения, которые «сбрасываются» с края крыла в верхней и нижней точках. Они и создают достаточную для полета шмеля подъемную силу и тягу.

Меняя скорость первой и второй фаз движения, насекомое контролирует направление этих сил, маневрируя в воздухе. И даже щетинки, бугры и неровности на поверхности крыла — отличие от обтекаемого крыла самолета — работают на образование турбулентных вихрей.

Нам очень приятно, что нашу «птичку» тепло приняли на пикабу. Хотя без ложки дегтя не обошлось. Данная статья — адаптация для пикабу с небольшим дополнением от Андрея Мельника.

Исторически так сложилось, что махолет не нашел развития. На заре авиации он оказался слишком сложным и все попытки создать аппарат с машущим крылом были тщетными. Но сама мысль летать по-птичьему не оставляла умы ученых с самого зарождения авиации. Еще Жуковский, прародитель современной аэродинамики, неоднократно обращался к теории полета птиц, что стало основой всей современной аэродинамики. Однако, решив задачу парения, вихревой теории винта и крыла, Николай Егорович оставил проблему машущего крыла без должного внимания. Позже ее попытались решить в группе Михаила Тихонравова, одного из основоположников космической отрасли СССР, однако дальше общих теоретических выкладок дело не пошло, а с развитием самолетостроения интерес к машущему полету совсем угас.

Новая волна интереса к махолетам начинается в 80-х годах. В Советском Союзе и зарубежом публикуются статьи, связанные с исследованиями полета птиц, насекомых, древних ящеров и именно тогда появляется расхожая фраза: по законам аэродинамики шмель летать не может, но он их не знает и поэтому летает. Действительно, эти исследования породили главный вопрос: как именно реализуется машущий полет? Кульминацией стала попытка профессора Пола Маккриди из NASA создать копию гигантского птеродактиля, которая так и не смогла полететь, однако это не помешало предприимчивому профессору продать ее нью-йоркскому музею за три миллиона долларов. Неудача Маккриди в очередной раз снизила интерес к машущему полету, который опять стал выглядеть нереализуемым.

В это время на фоне новых исследований и неудач зарубежных коллег в Московском Авиационном институте создается Лаборатория машущего полета, которую активно поддерживает тогдашний руководитель ОКБ Сухого Михаил Симонов. В ходе многолетней работы команде удалось создать ряд легких летающих моделей, а так же заложить основы аэродинамики и динамики машущего полета. К 1993 году уже был спроектирован пилотируемый экспериментальный аппарат и даже выделена часть средств, но перестройка не щадила никого и проект заглох. Руководитель лаборатории профессор Валентин Киселев впоследствии неоднократно пытался поднять тему машущекрылых аппаратов, но попытки оказались тщетны, равно как и постройка 22-килограммовой модели.

Читать еще:  Бант своими руками. Схемы, идеи и мастер-классы

В это время за рубежом лидером в постройке махолетов становится Торонтский университет. Команде под руководством Джеймса Делоуриера удалось добиться значительных успехов — в 2002 году они создали отлично летающую модель махолета весом в 3,5 килограмма. А в 2004 году уже был построен пилотируемый аппарат, который так и не смог оторваться от земли из-за малой мощности двигателя. Два года спустя на орнитоптер установили дополнительный небольшой реактивный двигатель, который все же позволил совершить полет, но через 300 метров пилот потерял управление и аппарат перевернулся. В 2010 году обновленная команда Торонтского университета создала первый пилотируемый махолет с мускульным приводом, который смог пролететь 19,3 секунд в горизонтальном полете только за счет сил пилота. Правда, аппарат сначала затянули на высоту как планер, и только затем пилот смог парить почти 20 секунд без потери высоты.

В 2011 году к проектированию нового аппарата приступили мы, молодая команда выпускников МАИ: Андрей Мельник и Дмитрий Шувалов. Поначалу проект строился на основании идей Киселева, так как это был единственный достойный теоретический базис в сфере орнитоптеров. Однако конструкторские решения, предложенные Валентином Афанасьевичем, показали свою неоправданность и неэффективность. В итоге мы решили кардинально пересмотреть конструкцию махолета в сторону обеспечения высокой надежности привода и возможности регулировки основных параметров в широком диапазоне значений. В основу расчета прочности узлов и соединений была положена теория Валентина Киселева о приоритете аэродинамических нагрузок над инерционными. К нашему большому сожалению, именно это предположение оказало на все развитие проекта эффект якоря, постоянно тормозя проект.

После сборки и испытаний первого варианта нового привода мы обнаружили, что расчетные значения нагрузок не совпадают с действительными, что, в свою очередь, приводит к быстрому износу механизмов привода. К тому, же само качество исполнения деталей привода сторонними изготовителями оказалось весьма низким, в сумме эти два фактора не позволили реализовать полет. После длительной доработки конструкции нам удалось добиться надежности привода, однако аппарат отказывался устойчиво летать, совершая лишь небольшие пролеты. К тому моменту я разработал основы аэродинамики махолета, что позволило провести оценку нагрузок и сделать выводы о проблемах полета. Дело в том, что значительная часть крыла махолета, если оно жесткое по кручению, находится в зоне вихревого обдувания и срыва потока, что сильно уменьшает подъемную силу аппарата. Тогда мы решенили создать новые секционные крылья, которые бы позволили улучшить аэродинамику аппарата. Это было интересное конструкторское решение, оно позволило разобраться в аэродинамике крыла, но не дало ожидаемого эффекта — аппарат никак не мог выйти на заданную частоту и постоянно ломался. Мы сохраняли верность теории о преобладании аэродинамических сил и искали какой-то новый эффект, но все оказалось проще.На очередных испытаниях аппарат достиг требуемой частоты, однако произошла поломка опорного подшипника, что явно указало на то, что усилия, действующие на этот узел, значительно превышают расчетные.

Разгадать загадку позволила, как ни странно, ошибка изготовителей: они не закалили кривошипы из алюминиевого сплава, что было некритично для расчетных нагрузок, но при реальном полете он деформировался и «запомнил», какие усилия его искорежили. Это позволило оценить место, где значение силы было максимальным и даже рассчитать ее значение — все указывало на то, что это инерционные динамические силы, значительно превышающие аэродинамические. Впоследствии эти данные позволили доказать, что нельзя создать махолет с механическим приводом массой более 42 килограммов, что поставило в тупик дальнейшие исследования.Тем не менее, обладая новой информацией, нам удалось перепроектировать аппарат, разобраться в расчетных нагрузках, аэродинамике и динамике полета. Это позволило создать модель массой 30 килограммов, которая хорошо летала и управлялась, но, тем не менее, не решала главную задачу — возможность строить аппараты большей размерности.

В 2013 году я получил грант от Фонда содействия малым формам предпринимательства в рамках программы «УМНИК», что позволило продолжить исследования аэродинамики и динамики полета махолетов. За два года научно-исследовательских работ удалось разработать принципиально иной подход к созданию машущекрылых аппаратов. Паразитные, ограничивающие масштаб инерционные нагрузки удалось использовать наоборот — для повышения эффективности маха. Фактически, в новой схеме крыло становится инерционным элементом физического маятника, совершая гармонические колебания, то накапливая кинетическую энергию, то отдавая ее пневмопружинам. А подвод энергии, необходимый для создания аэродинамических сил, выполняется за счет сжигания топлива и подвода сжатого газа в пневмопружины. Такое решение, теоретически, позволяет создавать аппараты практически любой размерности, а это уже принципиально иной уровень. Главное преимущество махолета над остальными летательными средствами это то, что он использует крыло для создания и подъемной силы, и тяги, убирая посредников в виде винта, редуктора и двигателя, который преобразует возвратно-поступательные движения во вращательные.

«Мы подобны карликам, усевшимся на плечах великанов»

При создание махолета использовался опыт и знания всех, кто когда-либо этим занимался. Включая уважаемого Киселева В.А. Но проект РАРОК пошел дальше, увеличив взлетную массу в разы! Честно говоря, очень неприятно читать такие комментарии в наш адрес. В любом случае, время покажет кто прав!

Что же происходит сейчас? Все очень просто. Работы продолжаются! Несмотря на провал компании бум стартера, работа идет! Хотя медленнее чем хотелось-бы. В скором времени мы представим вам еще одну «птичку» Андрея Мельника:
«Он вообще другой. Он должен доказать, что махолеты эффективны, поэтому он отличается и внешне и внутренне от всех предыдущих, он качественно другой»
©

Спасибо за внимание!
Ждите от нас других интересных проектов

• Если ваша птица пикирует загните вверх хвост, если кабрирует (задирает нос и падает), то наоборот опустите. Также изменением длины шатунов добиваемся большей стабильности и тяги при полете.

• Если все собрано правильно эта модель набирает высоту прямолинейно, после чего медленно помахивая крыльями планирует, дальше садится чуть поджав крылья. Комнатная моделька больше похожа на стрекозу при наборе высоты, частота взмахов достигает 20Гц. При сборке большей модели время полета, высота и зрелищность полета увеличиваются, падает частота взмахов, но нужно более мощную и длинную резинку

Однако полеты на резиномоторе не очень увлекательны. Гораздо интереснее – радиоуправляемый орнитоптер.

Читать еще:  Погреб своими руками

Видеообзор

С какой частотой птицы обычно машут крыльями?

Это зависит от площади крыла самой птицы. Например, для аиста достаточно махать крыльями с частотой 2 взмаха в секунду, воробей должен делать 13 взмахов в секунду, а колибри — до 80. Я хотел сделать большой орнитоптер, поэтому площадь крыла тоже будет большой. Для расчета площади крыла нужно знать размах крыльев. Итак, размах крыльев стал первым выбранным параметром. Я решил сделать орнитоптер с размахом крыльев в диапазоне 1200-1400 мм.

Я искал в интернете существующие конструкции орнитоптеров и анализировал их размеры. Большинство орнитоптеров сделаны в строке определенного размера. Орнитоптеры Hobbie могут быть отсортированы по размаху крыльев (от 660 до 3000 мм) и весу в полете. Мой орнитоптер с размахом крыльев 1200-1400 мм будет где-то посередине этой шкалы, не большой, но и не маленький.

Я искал информацию о конструкции на форумах авиамоделирования, в спецификациях об орнитоптерах и во множестве видео на Youtube. Я выяснил, что орнитоптеры с таким размахом крыльев должны выполнять от 5 до 7 взмахов в секунду и иметь полетный вес в диапазоне от 300 до 500 г. Я выбрал среднее значение веса полета — 400 г. Поскольку у меня нет опыта в создании самолетов и махалетов, я выбрал все значения эмпирически и в основном надеялся на удачу.

Зная приблизительную частоту взмахов (от 5 до 7 Гц), я могу разработать механизм взмахов.

В итоге для орнитоптера мною были выбранны следующие параметры:

Современные вызовы

Хотя современные самолёты могут перевозить тяжелые грузы на тысячи километров, конструкция и испытания эффективного орнитоптера до сих пор остаётся непростым заданием.

Из-за разной конструкции тела человек и птица создают разную подъемную силу. Граничных показателей мощности могут достичь только спортсмены-тяжелоатлеты, вес которых превышает создаваемую подъемную силу даже без учёта веса летательного аппарата. Теоретически, если бы человек весом 75 кг смог бы выработать граничную мощность, он мог бы совершить полёт на махолёте весом 15 кг за счёт только мышечной тяги, однако такой полёт длился бы не более нескольких секунд.

Кроме того, птичий полёт – это разнообразный и сложный процесс, прошедший немалый эволюционный путь. Для правильного маха птичьего крыла важна каждая мелочь и в прямом смысле чувство каждой клетки своего тела.

Над махолётами работают как исследователи и инженеры, так и изобретатели-энтузиасты. Любительские модели имеют разные формы и способы управления. Их создатели соревнуются за самое долгое время полёта. Задание состоит в том, чтобы разработать свою теорию и изобрести свой способ махающего полёта.

Изобретатели рассматривали идеи использования пружинных, резиновых, пневматических и других аккумуляторов для накопления энергии, которая вырабатывается человеком. Лучших результатов можно было бы достичь путём зарядки аккумулятора ещё до начала полёта. Но в таком случае махолёт теряет свою суть и становится обычным двигателем с малым КПД.

Первый в мире орнитоптер на мускульной тяге под названием «Снежная птица» (Snowbird) был сконструирован в университете Торонто (Канада) в 2010 году. 2 августа того же года Snowbird поставил свой первый неофициальный рекорд, когда пилот Тодд Райхерт за 19,3 секунды пролетел расстояние в 145 метров со средней скоростью 25,6 кмчас. Стоит отметить, что махолёт подняли в воздух с помощью тяги легкового автомобиля.

От игры до науки

Надо сказать, что если «полезный» машущий полет не удается освоить до сих пор, то игровая индустрия чувствует себя в этой области уже вполне уверенно. Первые небольшие модели на резинке появились в продаже еще в конце XIX века, а сегодня одну из популярных игрушек с машущими крыльями, электромотором и на радиоуправлении предлагает компания-разработчик игрушечных роботов WowWee.

«Я сам начинал с авиамоделирования, — говорит Андрей Мельник, — поэтому представляю, насколько требовательны самолеты к мастерству пилота, управляющего ими с земли. Буквально одно неловкое движение — и он заваливается в штопор или в крен. И я могу сказать, что мой опыт управления нашим махолетом показывает, что с этим аппаратом справится даже ребенок. Он получился у нас настолько устойчивым, что легко прощает все ошибки и остается в воздухе».

Средства в разработку нового типа летательных аппаратов при довольно сомнительных перспективах вкладывают неохотно. Однако Андрею Мельнику и Дмитрию Шувалову удалось убедить инвесторов, что благодаря современным технологиям и при должных вложениях махолет можно создать. «Нам удалось нащупать несколько принципиальных моментов, которые прежде, в том числе и когда я работал с профессором Киселевым, понимались неверно, — добавляет конструктор. — Первые наши модели просто разваливались, не выдерживая нагрузки. Так вот, предполагалось, что такую нагрузку на аппарат создают аэродинамические силы. Однако испытания показали, что это не так, и основное воздействие он испытывает из-за инерции машущих крыльев».

Выяснив причины неудач, разработчики максимально снизили вес крыла — до 600 г при площади 0,5 м 2 — и демпфировали его воздействие на фюзеляж. «Настоящим сюрпризом для нас стали результаты моделирования, которые показали, что аэродинамический центр четырехкрылого аппарата находится не где-то между передней и задней парой крыльев, а позади них, — вспоминает Андрей Мельник. — Чтобы решить эту проблему, пришлось изменить геометрию переднего и заднего оперений. Но в результате махолет стал уверенно держаться в воздухе».

Нам очень приятно, что нашу «птичку» тепло приняли на пикабу. Хотя без ложки дегтя не обошлось. Данная статья — адаптация для пикабу с небольшим дополнением от Андрея Мельника.

Исторически так сложилось, что махолет не нашел развития. На заре авиации он оказался слишком сложным и все попытки создать аппарат с машущим крылом были тщетными. Но сама мысль летать по-птичьему не оставляла умы ученых с самого зарождения авиации. Еще Жуковский, прародитель современной аэродинамики, неоднократно обращался к теории полета птиц, что стало основой всей современной аэродинамики. Однако, решив задачу парения, вихревой теории винта и крыла, Николай Егорович оставил проблему машущего крыла без должного внимания. Позже ее попытались решить в группе Михаила Тихонравова, одного из основоположников космической отрасли СССР, однако дальше общих теоретических выкладок дело не пошло, а с развитием самолетостроения интерес к машущему полету совсем угас.

Новая волна интереса к махолетам начинается в 80-х годах. В Советском Союзе и зарубежом публикуются статьи, связанные с исследованиями полета птиц, насекомых, древних ящеров и именно тогда появляется расхожая фраза: по законам аэродинамики шмель летать не может, но он их не знает и поэтому летает. Действительно, эти исследования породили главный вопрос: как именно реализуется машущий полет? Кульминацией стала попытка профессора Пола Маккриди из NASA создать копию гигантского птеродактиля, которая так и не смогла полететь, однако это не помешало предприимчивому профессору продать ее нью-йоркскому музею за три миллиона долларов. Неудача Маккриди в очередной раз снизила интерес к машущему полету, который опять стал выглядеть нереализуемым.

Читать еще:  Букет невесты своими руками - 5 необычных идей

В это время на фоне новых исследований и неудач зарубежных коллег в Московском Авиационном институте создается Лаборатория машущего полета, которую активно поддерживает тогдашний руководитель ОКБ Сухого Михаил Симонов. В ходе многолетней работы команде удалось создать ряд легких летающих моделей, а так же заложить основы аэродинамики и динамики машущего полета. К 1993 году уже был спроектирован пилотируемый экспериментальный аппарат и даже выделена часть средств, но перестройка не щадила никого и проект заглох. Руководитель лаборатории профессор Валентин Киселев впоследствии неоднократно пытался поднять тему машущекрылых аппаратов, но попытки оказались тщетны, равно как и постройка 22-килограммовой модели.

В это время за рубежом лидером в постройке махолетов становится Торонтский университет. Команде под руководством Джеймса Делоуриера удалось добиться значительных успехов — в 2002 году они создали отлично летающую модель махолета весом в 3,5 килограмма. А в 2004 году уже был построен пилотируемый аппарат, который так и не смог оторваться от земли из-за малой мощности двигателя. Два года спустя на орнитоптер установили дополнительный небольшой реактивный двигатель, который все же позволил совершить полет, но через 300 метров пилот потерял управление и аппарат перевернулся. В 2010 году обновленная команда Торонтского университета создала первый пилотируемый махолет с мускульным приводом, который смог пролететь 19,3 секунд в горизонтальном полете только за счет сил пилота. Правда, аппарат сначала затянули на высоту как планер, и только затем пилот смог парить почти 20 секунд без потери высоты.

В 2011 году к проектированию нового аппарата приступили мы, молодая команда выпускников МАИ: Андрей Мельник и Дмитрий Шувалов. Поначалу проект строился на основании идей Киселева, так как это был единственный достойный теоретический базис в сфере орнитоптеров. Однако конструкторские решения, предложенные Валентином Афанасьевичем, показали свою неоправданность и неэффективность. В итоге мы решили кардинально пересмотреть конструкцию махолета в сторону обеспечения высокой надежности привода и возможности регулировки основных параметров в широком диапазоне значений. В основу расчета прочности узлов и соединений была положена теория Валентина Киселева о приоритете аэродинамических нагрузок над инерционными. К нашему большому сожалению, именно это предположение оказало на все развитие проекта эффект якоря, постоянно тормозя проект.

После сборки и испытаний первого варианта нового привода мы обнаружили, что расчетные значения нагрузок не совпадают с действительными, что, в свою очередь, приводит к быстрому износу механизмов привода. К тому, же само качество исполнения деталей привода сторонними изготовителями оказалось весьма низким, в сумме эти два фактора не позволили реализовать полет. После длительной доработки конструкции нам удалось добиться надежности привода, однако аппарат отказывался устойчиво летать, совершая лишь небольшие пролеты. К тому моменту я разработал основы аэродинамики махолета, что позволило провести оценку нагрузок и сделать выводы о проблемах полета. Дело в том, что значительная часть крыла махолета, если оно жесткое по кручению, находится в зоне вихревого обдувания и срыва потока, что сильно уменьшает подъемную силу аппарата. Тогда мы решенили создать новые секционные крылья, которые бы позволили улучшить аэродинамику аппарата. Это было интересное конструкторское решение, оно позволило разобраться в аэродинамике крыла, но не дало ожидаемого эффекта — аппарат никак не мог выйти на заданную частоту и постоянно ломался. Мы сохраняли верность теории о преобладании аэродинамических сил и искали какой-то новый эффект, но все оказалось проще.На очередных испытаниях аппарат достиг требуемой частоты, однако произошла поломка опорного подшипника, что явно указало на то, что усилия, действующие на этот узел, значительно превышают расчетные.

Разгадать загадку позволила, как ни странно, ошибка изготовителей: они не закалили кривошипы из алюминиевого сплава, что было некритично для расчетных нагрузок, но при реальном полете он деформировался и «запомнил», какие усилия его искорежили. Это позволило оценить место, где значение силы было максимальным и даже рассчитать ее значение — все указывало на то, что это инерционные динамические силы, значительно превышающие аэродинамические. Впоследствии эти данные позволили доказать, что нельзя создать махолет с механическим приводом массой более 42 килограммов, что поставило в тупик дальнейшие исследования.Тем не менее, обладая новой информацией, нам удалось перепроектировать аппарат, разобраться в расчетных нагрузках, аэродинамике и динамике полета. Это позволило создать модель массой 30 килограммов, которая хорошо летала и управлялась, но, тем не менее, не решала главную задачу — возможность строить аппараты большей размерности.

В 2013 году я получил грант от Фонда содействия малым формам предпринимательства в рамках программы «УМНИК», что позволило продолжить исследования аэродинамики и динамики полета махолетов. За два года научно-исследовательских работ удалось разработать принципиально иной подход к созданию машущекрылых аппаратов. Паразитные, ограничивающие масштаб инерционные нагрузки удалось использовать наоборот — для повышения эффективности маха. Фактически, в новой схеме крыло становится инерционным элементом физического маятника, совершая гармонические колебания, то накапливая кинетическую энергию, то отдавая ее пневмопружинам. А подвод энергии, необходимый для создания аэродинамических сил, выполняется за счет сжигания топлива и подвода сжатого газа в пневмопружины. Такое решение, теоретически, позволяет создавать аппараты практически любой размерности, а это уже принципиально иной уровень. Главное преимущество махолета над остальными летательными средствами это то, что он использует крыло для создания и подъемной силы, и тяги, убирая посредников в виде винта, редуктора и двигателя, который преобразует возвратно-поступательные движения во вращательные.

«Мы подобны карликам, усевшимся на плечах великанов»

При создание махолета использовался опыт и знания всех, кто когда-либо этим занимался. Включая уважаемого Киселева В.А. Но проект РАРОК пошел дальше, увеличив взлетную массу в разы! Честно говоря, очень неприятно читать такие комментарии в наш адрес. В любом случае, время покажет кто прав!

Что же происходит сейчас? Все очень просто. Работы продолжаются! Несмотря на провал компании бум стартера, работа идет! Хотя медленнее чем хотелось-бы. В скором времени мы представим вам еще одну «птичку» Андрея Мельника:
«Он вообще другой. Он должен доказать, что махолеты эффективны, поэтому он отличается и внешне и внутренне от всех предыдущих, он качественно другой»
©

Спасибо за внимание!
Ждите от нас других интересных проектов

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector